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Abstract

Matthew Kwan and Yuval Wigderson showed that for an infinite family
of graphs, the Lovász number gives an upper bound of O(n3/4) for the
size of an independent set (where n is the number of vertices), while the
weighted inertia bound cannot do better than Ω(n). Here we point out
that there is an infinite family of graphs for which the Lovász number is
Ω(n3/4), while the unweighted inertia bound is O(n1/2).

1 An Example
We mostly use the notation of [2, §2] for association schemes. Let X be a finite
set of size n. An association scheme with d classes is a pair (X,R) such that

(i) R = {R0, R1, . . . , Rd} is a partition of X ×X,

(ii) R0 = {(x, x) : x ∈ X},

(iii) Ri = RT
i , that is (x, y) ∈ Ri implies (y, x) ∈ Ri,

(iv) there are numbers pkij such that for any pair (x, y) ∈ Rk the number of z
with (x, z) ∈ Ri and (z, y) ∈ Rj equals pkij .

Note that some authors call (X,R) as defined above a symmetric association
scheme. For relations Ri, the {0, 1}-adjacency matrices Ai are defined by

(Ai)xy =

{
1 if (x, y) ∈ Ri,

0 otherwise.

As (i) holds, the matrices Ai are linearly independent, and as (iii) and (iv) hold,
they generate a (d+1)-dimensional commutative algebra A of symmetric matri-
ces, the Bose-Mesner algebra. Since the Ai commute, they can be diagonalized
simultaneously and we find a decomposition of Cn into a direct sum of d + 1
eigenspaces of dimension fj for 0 ≤ j ≤ d. As the all-ones matrix J is in the
span of Ai and has n as an eigenvalue of multiplicity 1, we may suppose that
f0 = 1. If {Ej : 0 ≤ j ≤ d} is the basis of minimal idempotents of A, then

fj = rkEj = trEj ,

d∑
j=0

Ej = I, E0 = n−1J.
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Define matrices P and Q by

Aj =

d∑
i=0

PijEi, Ej =
1

n

d∑
i=0

QijAi.

Then AjEi = PijEi which shows that the Pij are the eigenvalues of Aj . Also
note that Q0j = fj as tr(Ej) = fj .

For a subset Y of X with characteristic vector χ, define a vector a = (ai),
the inner distribution of Y , by

ai :=
1

|Y |
χTAiχ =

1

|Y |
|{(x, y) ∈ Y × Y ∩Ri}|.

Delsarte’s linear programming bound states that

(aQ)j ≥ 0

for all 0 ≤ j ≤ d, see also Proposition 2.5.2 in [2].
We refer to [6] for details on the weighted ratio bound and the weighted

inertia bound (also called Cvetković bound). It is well-known that the weighted
ratio bound (also called Hoffman bound) is a special case of the Lovász number
with equality in certain families of graphs. For graphs which correspond to
a union of relations in an association scheme, Delsarte’s linear programming
bound for independent sets and the Lovász number are the same, see [7]. It is
well-known that even the unweighted inertia bound sometimes gives a better
bound on the independence number of a graph than the Lovász number. For
instance, for the point graph of a generalized quadrangle of order (q, q2), a graph
with (q3 + 1)(q+ 1) vertices, the unweighted inertia bound is q3 − q2 + q, while
the Lovász number is q3 + 1. Anurag Bishnoi asked if the inertia bound can
also be asymptotically better than the Lovász number (as a parameter of the
number of vertices n) [1]. The purpose of this note is to point out that there
exists a graph on n vertices for which the Lovász number is Ω(n3/4), but the
weighted inertia bound is O(n1/2). In [3] Cameron and Seidel describe a 3-
class association scheme which has the following P - and Q-matrices (follow the
instructions in [4, page 2] together with [5] to obtain P and Q in a convenient
manner):

P =


1 22t−1 24t−2+23t−2−22t−1−2t−1 24t−2−23t−2−22t−1+2t−1

1 −1 23t−2 − 2t−1 −23t−2 + 2t−1

1 −1 −2t−1 2t−1

1 22t − 1 −22t−1 − 2t−1 −22t−1 + 2t−1

 ,

Q =


1 22t − 1 24t−1 − 3 · 22t−1 + 1 22t−1 − 1
1 −1 −22t−1 + 1 22t−1 − 1
1 2t − 1 −2t + 1 −1
1 −2t − 1 2t + 1 −1


Hence, using fj = Q0j , the graph with adjacency matrix A3 has eigenvalues

• 24t−2 − 23t−2 − 22t−1 + 2t−1 with multiplicity 1,

• −23t−2 + 2t−1 with multiplicity 22t − 1,
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• 2t−1 with multiplicity 24t−1 − 3 · 22t−1 + 1,

• −22t−1 + 2t−1 with multiplicity 22t−1 − 1.

Hence, the unweighted inertia bound is

(22t − 1) + (22t−1 − 1) = 3 · 22t−1 − 2.

The inner distribution a of an independent set Y of the graph has the form
a = (1, x, y, 0), where |Y | = 1+x+ y. Hence, the Lovász number is the solution
to the linear program which maximizes 1 + x + y under the constraints that
(aQ)j ≥ 0 for 0 ≤ j ≤ d. As (aQ)3 ≥ 0, we find that

y ≤ (x+ 1) · (22t−1 − 1).

As (aQ)2 ≥ 0, we find that

(22t−1 − 1)x+ (2t − 1)y ≤ 24t−1 − 3 · 22t−1 + 1.

Clearly, x = 2t−1 and y = 2t ·(22t−1−1) maximizes 1+x+y. As (aQ)j ≥ 0 for
all j for this solution, this is an optimal solution. Hence, the Lovász number of
the graph is 23t−1. Together with [6], this shows the asymptotic incomparability
of the Lovász number and the weighted inertia bound.
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