# Ratio bound (Lovász number) versus inertia bound 

Ferdinand Ihringer

14 December 2023


#### Abstract

Matthew Kwan and Yuval Wigderson showed that for an infinite family of graphs, the Lovász number gives an upper bound of $O\left(n^{3 / 4}\right)$ for the size of an independent set (where $n$ is the number of vertices), while the weighted inertia bound cannot do better than $\Omega(n)$. Here we point out that there is an infinite family of graphs for which the Lovász number is $\Omega\left(n^{3 / 4}\right)$, while the unweighted inertia bound is $O\left(n^{1 / 2}\right)$.


## 1 An Example

We mostly use the notation of [2, §2] for association schemes. Let $X$ be a finite set of size $n$. An association scheme with $d$ classes is a pair $(X, \mathcal{R})$ such that
(i) $\mathcal{R}=\left\{R_{0}, R_{1}, \ldots, R_{d}\right\}$ is a partition of $X \times X$,
(ii) $R_{0}=\{(x, x): x \in X\}$,
(iii) $R_{i}=R_{i}^{T}$, that is $(x, y) \in R_{i}$ implies $(y, x) \in R_{i}$,
(iv) there are numbers $p_{i j}^{k}$ such that for any pair $(x, y) \in R_{k}$ the number of $z$ with $(x, z) \in R_{i}$ and $(z, y) \in R_{j}$ equals $p_{i j}^{k}$.

Note that some authors call $(X, \mathcal{R})$ as defined above a symmetric association scheme. For relations $R_{i}$, the $\{0,1\}$-adjacency matrices $A_{i}$ are defined by

$$
\left(A_{i}\right)_{x y}= \begin{cases}1 & \text { if }(x, y) \in R_{i} \\ 0 & \text { otherwise }\end{cases}
$$

As (i) holds, the matrices $A_{i}$ are linearly independent, and as (iii) and (iv) hold, they generate a $(d+1)$-dimensional commutative algebra $\mathcal{A}$ of symmetric matrices, the Bose-Mesner algebra. Since the $A_{i}$ commute, they can be diagonalized simultaneously and we find a decomposition of $\mathbb{C}^{n}$ into a direct sum of $d+1$ eigenspaces of dimension $f_{j}$ for $0 \leq j \leq d$. As the all-ones matrix $J$ is in the span of $A_{i}$ and has $n$ as an eigenvalue of multiplicity 1 , we may suppose that $f_{0}=1$. If $\left\{E_{j}: 0 \leq j \leq d\right\}$ is the basis of minimal idempotents of $\mathcal{A}$, then

$$
f_{j}=\operatorname{rk} E_{j}=\operatorname{tr} E_{j}, \quad \sum_{j=0}^{d} E_{j}=I, \quad E_{0}=n^{-1} J .
$$

Define matrices $P$ and $Q$ by

$$
A_{j}=\sum_{i=0}^{d} P_{i j} E_{i}, \quad E_{j}=\frac{1}{n} \sum_{i=0}^{d} Q_{i j} A_{i}
$$

Then $A_{j} E_{i}=P_{i j} E_{i}$ which shows that the $P_{i j}$ are the eigenvalues of $A_{j}$. Also note that $Q_{0 j}=f_{j}$ as $\operatorname{tr}\left(E_{j}\right)=f_{j}$.

For a subset $Y$ of $X$ with characteristic vector $\chi$, define a vector $a=\left(a_{i}\right)$, the inner distribution of $Y$, by

$$
a_{i}:=\frac{1}{|Y|} \chi^{T} A_{i} \chi=\frac{1}{|Y|}\left|\left\{(x, y) \in Y \times Y \cap R_{i}\right\}\right| .
$$

Delsarte's linear programming bound states that

$$
(a Q)_{j} \geq 0
$$

for all $0 \leq j \leq d$, see also Proposition 2.5.2 in [2].
We refer to [6] for details on the weighted ratio bound and the weighted inertia bound (also called Cvetković bound). It is well-known that the weighted ratio bound (also called Hoffman bound) is a special case of the Lovász number with equality in certain families of graphs. For graphs which correspond to a union of relations in an association scheme, Delsarte's linear programming bound for independent sets and the Lovász number are the same, see 77. It is well-known that even the unweighted inertia bound sometimes gives a better bound on the independence number of a graph than the Lovász number. For instance, for the point graph of a generalized quadrangle of order $\left(q, q^{2}\right)$, a graph with $\left(q^{3}+1\right)(q+1)$ vertices, the unweighted inertia bound is $q^{3}-q^{2}+q$, while the Lovász number is $q^{3}+1$. Anurag Bishnoi asked if the inertia bound can also be asymptotically better than the Lovász number (as a parameter of the number of vertices $n$ ) [1]. The purpose of this note is to point out that there exists a graph on $n$ vertices for which the Lovász number is $\Omega\left(n^{3 / 4}\right)$, but the weighted inertia bound is $O\left(n^{1 / 2}\right)$. In [3] Cameron and Seidel describe a 3class association scheme which has the following $P$ - and $Q$-matrices (follow the instructions in 44, page 2] together with [5 to obtain $P$ and $Q$ in a convenient manner):

$$
\begin{aligned}
& P=\left(\begin{array}{cccc}
1 & 2^{2 t}-1 & 2^{4 t-2}+2^{3 t-2}-2^{2 t-1}-2^{t-1} & 2^{4 t-2}-2^{3 t-2}-2^{2 t-1}+2^{t-1} \\
1 & -1 & 2^{3 t-2}-2^{t-1} & -2^{3 t-2}+2^{t-1} \\
1 & -1 & -2^{t-1} & 2^{t-1} \\
1 & 2^{2 t}-1 & -2^{2 t-1}-2^{t-1} & -2^{2 t-1}+2^{t-1}
\end{array}\right), \\
& Q=\left(\begin{array}{cccc}
1 & 2^{2 t}-1 & 2^{4 t-1}-3 \cdot 2^{2 t-1}+1 & 2^{2 t-1}-1 \\
1 & -1 & -2^{2 t-1}+1 & 2^{2 t-1}-1 \\
1 & 2^{t}-1 & -2^{t}+1 & -1 \\
1 & -2^{t}-1 & 2^{t}+1 & -1
\end{array}\right)
\end{aligned}
$$

Hence, using $f_{j}=Q_{0 j}$, the graph with adjacency matrix $A_{3}$ has eigenvalues

- $2^{4 t-2}-2^{3 t-2}-2^{2 t-1}+2^{t-1}$ with multiplicity 1 ,
- $-2^{3 t-2}+2^{t-1}$ with multiplicity $2^{2 t}-1$,
- $2^{t-1}$ with multiplicity $2^{4 t-1}-3 \cdot 2^{2 t-1}+1$,
- $-2^{2 t-1}+2^{t-1}$ with multiplicity $2^{2 t-1}-1$.

Hence, the unweighted inertia bound is

$$
\left(2^{2 t}-1\right)+\left(2^{2 t-1}-1\right)=3 \cdot 2^{2 t-1}-2
$$

The inner distribution $a$ of an independent set $Y$ of the graph has the form $a=(1, x, y, 0)$, where $|Y|=1+x+y$. Hence, the Lovász number is the solution to the linear program which maximizes $1+x+y$ under the constraints that $(a Q)_{j} \geq 0$ for $0 \leq j \leq d$. As $(a Q)_{3} \geq 0$, we find that

$$
y \leq(x+1) \cdot\left(2^{2 t-1}-1\right)
$$

As $(a Q)_{2} \geq 0$, we find that

$$
\left(2^{2 t-1}-1\right) x+\left(2^{t}-1\right) y \leq 2^{4 t-1}-3 \cdot 2^{2 t-1}+1 .
$$

Clearly, $x=2^{t}-1$ and $y=2^{t} \cdot\left(2^{2 t-1}-1\right)$ maximizes $1+x+y$. As $(a Q)_{j} \geq 0$ for all $j$ for this solution, this is an optimal solution. Hence, the Lovász number of the graph is $2^{3 t-1}$. Together with [6], this shows the asymptotic incomparability of the Lovász number and the weighted inertia bound.

## References

[1] A. Bishnoi, private communication, 08 December 2023.
[2] A. E. Brouwer, A. M. Cohen \& A. Neumaier, Distance-regular graphs, Springer, Heidelberg, 1989.
[3] P. J. Cameron \& J. J. Seidel, Quadratic forms over GF(2), Indagationes Mathematicae (Proceedings), 76(1) (1973) 1-8.
[4] D. De Caen, Large equiangular sets of lines in Euclidean space, Electron. J. Combin. 7 (2000).
[5] D. De Caen, R. Mathon \& G. E. Moorehouse, A Family of Antipodal Distance-Regular Graphs Related to the Classical Preparata Codes, J. Algebraic Combin. 4 (1997) 317-327.
[6] M. Kwan \& Y. Wigderson, The inertia bound is far from tight, arXiv:2312.04925 [math.CO], 2023.
[7] A. Schrijver, A comparison of the Delsarte and Lovász bounds, IEEE Trans. Inf. Theory 25(4) (1979) 425-429.

Department of Mathematics,
Southern University of Science and Technology,
Shenzhen, China.
E-mail: ferdinand.ihringer@gmail.com.

