Ratio bound (Lovász number) versus inertia bound

Ferdinand Ihringer

14 December 2023

Abstract

Matthew Kwan and Yuval Wigderson showed that for an infinite family of graphs, the Lovász number gives an upper bound of $O(n^{3/4})$ for the size of an independent set (where *n* is the number of vertices), while the weighted inertia bound cannot do better than $\Omega(n)$. Here we point out that there is an infinite family of graphs for which the Lovász number is $\Omega(n^{3/4})$, while the unweighted inertia bound is $O(n^{1/2})$.

1 An Example

We mostly use the notation of $[2, \S 2]$ for association schemes. Let X be a finite set of size n. An association scheme with d classes is a pair (X, \mathcal{R}) such that

- (i) $\mathcal{R} = \{R_0, R_1, \dots, R_d\}$ is a partition of $X \times X$,
- (ii) $R_0 = \{(x, x) : x \in X\},\$
- (iii) $R_i = R_i^T$, that is $(x, y) \in R_i$ implies $(y, x) \in R_i$,
- (iv) there are numbers p_{ij}^k such that for any pair $(x, y) \in R_k$ the number of z with $(x, z) \in R_i$ and $(z, y) \in R_j$ equals p_{ij}^k .

Note that some authors call (X, \mathcal{R}) as defined above a symmetric association scheme. For relations R_i , the $\{0, 1\}$ -adjacency matrices A_i are defined by

$$(A_i)_{xy} = \begin{cases} 1 & \text{if } (x,y) \in R_i \\ 0 & \text{otherwise.} \end{cases}$$

As (i) holds, the matrices A_i are linearly independent, and as (iii) and (iv) hold, they generate a (d+1)-dimensional commutative algebra \mathcal{A} of symmetric matrices, the *Bose-Mesner algebra*. Since the A_i commute, they can be diagonalized simultaneously and we find a decomposition of \mathbb{C}^n into a direct sum of d+1eigenspaces of dimension f_j for $0 \leq j \leq d$. As the all-ones matrix J is in the span of A_i and has n as an eigenvalue of multiplicity 1, we may suppose that $f_0 = 1$. If $\{E_j : 0 \leq j \leq d\}$ is the basis of minimal idempotents of \mathcal{A} , then

$$f_j = \operatorname{rk} E_j = \operatorname{tr} E_j,$$
 $\sum_{j=0}^d E_j = I,$ $E_0 = n^{-1}J.$

Define matrices P and Q by

$$A_j = \sum_{i=0}^{d} P_{ij} E_i,$$
 $E_j = \frac{1}{n} \sum_{i=0}^{d} Q_{ij} A_i.$

Then $A_j E_i = P_{ij} E_i$ which shows that the P_{ij} are the eigenvalues of A_j . Also note that $Q_{0j} = f_j$ as $\operatorname{tr}(E_j) = f_j$. For a subset Y of X with characteristic vector χ , define a vector $a = (a_i)$,

the inner distribution of Y, by

$$a_i := \frac{1}{|Y|} \chi^T A_i \chi = \frac{1}{|Y|} |\{(x, y) \in Y \times Y \cap R_i\}|.$$

Delsarte's linear programming bound states that

$$(aQ)_i \ge 0$$

for all $0 \le j \le d$, see also Proposition 2.5.2 in [2].

We refer to [6] for details on the weighted ratio bound and the weighted inertia bound (also called Cvetković bound). It is well-known that the weighted ratio bound (also called Hoffman bound) is a special case of the Lovász number with equality in certain families of graphs. For graphs which correspond to a union of relations in an association scheme, Delsarte's linear programming bound for independent sets and the Lovász number are the same, see [7]. It is well-known that even the unweighted inertia bound sometimes gives a better bound on the independence number of a graph than the Lovász number. For instance, for the point graph of a generalized quadrangle of order (q, q^2) , a graph with $(q^3 + 1)(q + 1)$ vertices, the unweighted inertia bound is $q^3 - q^2 + q$, while the Lovász number is $q^3 + 1$. Anurag Bishnoi asked if the inertia bound can also be asymptotically better than the Lovász number (as a parameter of the number of vertices n [1]. The purpose of this note is to point out that there exists a graph on n vertices for which the Lovász number is $\Omega(n^{3/4})$, but the weighted inertia bound is $O(n^{1/2})$. In [3] Cameron and Seidel describe a 3class association scheme which has the following P- and Q-matrices (follow the instructions in [4, page 2] together with [5] to obtain P and Q in a convenient manner):

$$P = \begin{pmatrix} 1 & 2^{2t} - 1 & 2^{4t-2} + 2^{3t-2} - 2^{2t-1} - 2^{t-1} & 2^{4t-2} - 2^{3t-2} - 2^{2t-1} + 2^{t-1} \\ 1 & -1 & 2^{3t-2} - 2^{t-1} & 2^{t-1} \\ 1 & 2^{2t} - 1 & -2^{2t-1} - 2^{t-1} & -2^{2t-1} + 2^{t-1} \\ 1 & 2^{2t} - 1 & 2^{4t-1} - 3 \cdot 2^{2t-1} + 1 & 2^{2t-1} - 1 \\ 1 & -1 & -2^{2t-1} + 1 & 2^{2t-1} - 1 \\ 1 & 2^t - 1 & -2^t + 1 & -1 \\ 1 & -2^t - 1 & 2^t + 1 & -1 \end{pmatrix}$$

Hence, using $f_j = Q_{0j}$, the graph with adjacency matrix A_3 has eigenvalues

- $2^{4t-2} 2^{3t-2} 2^{2t-1} + 2^{t-1}$ with multiplicity 1,
- $-2^{3t-2} + 2^{t-1}$ with multiplicity $2^{2t} 1$,

- 2^{t-1} with multiplicity $2^{4t-1} 3 \cdot 2^{2t-1} + 1$,
- $-2^{2t-1} + 2^{t-1}$ with multiplicity $2^{2t-1} 1$.

Hence, the unweighted inertia bound is

$$(2^{2t} - 1) + (2^{2t-1} - 1) = 3 \cdot 2^{2t-1} - 2.$$

The inner distribution a of an independent set Y of the graph has the form a = (1, x, y, 0), where |Y| = 1 + x + y. Hence, the Lovász number is the solution to the linear program which maximizes 1 + x + y under the constraints that $(aQ)_j \ge 0$ for $0 \le j \le d$. As $(aQ)_3 \ge 0$, we find that

$$y \le (x+1) \cdot (2^{2t-1} - 1).$$

As $(aQ)_2 \ge 0$, we find that

$$(2^{2t-1} - 1)x + (2^t - 1)y \le 2^{4t-1} - 3 \cdot 2^{2t-1} + 1.$$

Clearly, $x = 2^t - 1$ and $y = 2^t \cdot (2^{2t-1} - 1)$ maximizes 1 + x + y. As $(aQ)_j \ge 0$ for all j for this solution, this is an optimal solution. Hence, the Lovász number of the graph is 2^{3t-1} . Together with [6], this shows the asymptotic incomparability of the Lovász number and the weighted inertia bound.

References

- [1] A. Bishnoi, private communication, 08 December 2023.
- [2] A. E. Brouwer, A. M. Cohen & A. Neumaier, *Distance-regular graphs*, Springer, Heidelberg, 1989.
- [3] P. J. Cameron & J. J. Seidel, Quadratic forms over GF(2), Indagationes Mathematicae (Proceedings), 76(1) (1973) 1–8.
- [4] D. De Caen, Large equiangular sets of lines in Euclidean space, Electron. J. Combin. 7 (2000).
- [5] D. De Caen, R. Mathon & G. E. Moorehouse, A Family of Antipodal Distance-Regular Graphs Related to the Classical Preparata Codes, J. Algebraic Combin. 4 (1997) 317–327.
- [6] M. Kwan & Y. Wigderson, The inertia bound is far from tight, arXiv:2312.04925 [math.CO], 2023.
- [7] A. Schrijver, A comparison of the Delsarte and Lovász bounds, IEEE Trans. Inf. Theory 25(4) (1979) 425–429.

Department of Mathematics, Southern University of Science and Technology, Shenzhen, China. E-mail: ferdinand.ihringer@gmail.com.