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Abstract. We provide new bounds for the maximum size of a set of
generators of H(2d − 1, q2) which pairwise intersect in codimension i
by applying a multiplicity bound by C. D. Godsil. This implies a new
bound on the maximum size of partial spreads of H(2d− 1, q2), d even.
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1. Introduction

This paper was motivated by the investigation of spreads and related struc-
tures in finite classical polar spaces. The first complete survey on spreads of
polar spaces was done by J. A. Thas [19] in 1981. Later this problem was
generalized to the study of partial spreads on polar spaces. A partial spread
is a set of pairwise disjoint generators (maximal totally isotropic subspaces)
of a polar space. From a graph theoretical point of view a partial spread
is a clique of the disjointness graph of the generators of a polar space. The
best result known to the author on the maximum size of partial spreads in
H(2d − 1, q2), d even, is due to J. De Beule, A. Klein, K. Metsch, and L.
Storme [6].

The problem of the maximum size of partial spreads is a special case
of the problem of the maximum size of constant distance codes of generators
in H(2d − 1, q2). Constant distance codes are of particular importance for
random network coding as introduced in [14]. We refer to [17] for the general
concept of constant distance codes of subspaces. For generators of Hermitian
polar spaces constant distance codes are sets of subspaces which pairwise
intersect in codimension i. Partial spreads are constant distance codes with



2 Ferdinand Ihringer

i = d. The only non-trivial upper bounds known to the author on these sets
for general i were provided in the PhD thesis of F. Vanhove [21].

A Hermitian polar space H(2d − 1, q2) is the geometry induced by a
non-degenerate Hermitian form f of V (2d, q2), where H(2d − 1, q2) consists
of all totally isotropic subspaces with respect to the form f . We refer to
[13, Ch. 23] for details. Our main concern are the combinatorial properties
of H(2d − 1, q2), so we will summarize these in the following. All maximal
totally isotropic subspaces of H(2d − 1, q2) have the same rank. These are
called generators. The Hermitian polar space H(2d− 1, q2) posses

d∏
i=1

(q2i−1 + 1)

of them. Isotropic subspaces of rank 1 are called points and H(2d − 1, q2)
posses

(q2d−1 + 1)(q2d − 1)

q2 − 1

of them. The number of generators on a point of H(2d − 1, q2) equals the
number of generators of H(2d− 3, q2). A generator of H(2d− 1, q2) contains
(q2d− 1)/(q2− 1) points. Let Y be a (partial) spread of H(2d− 1, q2). Using
the given combinatorial properties, double counting pairs (P,G) with P ∈ G
and G ∈ Y yields

|Y | ≤ q2d−1 + 1 (1.1)

with equality if and only if Y is a spread. This bound is never reached for
d > 1. In some sense this bound corresponds to the sphere packing bound for
codes if we consider all generators on a point as a sphere.

In the following we list the previous results on (partial) spreads in
H(2d− 1, q2) known to the author that improve the bound of (1.1).

Theorem 1.2 (De Beule, Klein, Metsch, Storme [6]). Let Y be a partial spread
of H(3, q2). Then

|Y | ≤ 1

2
(q3 + q + 2).

In particular, this bound is sharp for q = 2, 3.

Theorem 1.3 (De Beule, Klein, Metsch, Storme [6]). Let Y be a partial spread
of H(2d− 1, q2), d > 2 even. Then

|Y | ≤ q2d−1 − q3d/2(
√
q − 1).

The following theorem is stated for the more general concept of near
polygons in [21]. The Hermitian polar space H(2d − 1, q2) is a regular near
2d-polygon of order (q2, q), so we will only provide this theorem for this
particular case.
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Theorem 1.4 (Vanhove [21, Theorem 6.4.10]). Let Y be a set of generators of
H(2d− 1, q2) such that all elements of Y pairwise intersect in codimension i
odd. Then

|Y | ≤ 1 + qi.

Our result is the following:

Theorem 1.5. Let Y be a set of generators of H(2d− 1, q2), d > 1, such that
all elements of Y pairwise intersect in codimension i. Then

|Y | ≤ q2d−1 − q q
2d−2 − 1

q + 1
.

In particular, this is a bound on the maximum size of partial spreads in
H(2d− 1, q2).

First we will compare the case that Y is a partial spread (so i = d), d
even, to the previous results in the following table.

d even q Best known bound Theorem

2 2 6 1.2, 1.5

2 4 25 [4]

2 6= 4 1
2 (q3 + q + 2) 1.2

4 2, 3 q2d−1 − q q
2d−2−1
q+1 1.5 (new)

4 > 3 q2d−1 − q3d/2(
√
q − 1) 1.3

> 4 q2d−1 − q q
2d−2−1
q+1 1.5 (new)

These bounds are sharp for H(3, 4) [9] and H(3, 9) [10]. They are not sharp
for H(3, 16) [4].1 For all other cases the sharpness of these bounds seems to
be unknown.

For d odd a sharp upper bound of qd+1 on the maximum size of partial
spreads of H(2d − 1, q2) was proven by F. Vanhove [20]. Examples reaching
this bound were given by A. Aguglia, A. Cossidente, L. Ebert for d = 3 [1],
and by D. Luyckx for d > 3 odd [15].

Now we will discuss the general case. If i is odd, then Theorem 1.4 gives
a better bound for all i. In particular, for i = 1 it is well-known that the
largest example is the set of all q + 1 generators on a fixed subspace of rank
d − 1.2 According to [12, Remark 4] there exists a constant-rank distance
code with i = 2 and q = 2 in H(2d− 1, q2) of size

q2d − 1

q2 − 1
.

1This result by Cimráková and Fack is due to an intelligent computer search. A purely
combinatorial proof can be found in the PhD thesis of Linda Beukemann [2].
2Let Y be such an set of generators of maximum size. Theorem 1.4 yields |Y | ≤ q + 1 as
an upper bound. Let a, b ∈ Y . Then a∩ b has codimension 1. By the same argument as in

[16, Lemma 5], all elements of Y contain a ∩ b. This proves that Y is the set of all q + 1
generators on a fixed subspace of codimension 1 respectively rank d− 1.
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For q = 2 this is one less than the bound of Theorem 1.5. Therefore, Theorem
1.5 is nearly sharp. In particular, in the case q = 2, i = 2 the bound is sharp
for d = 2 by Dye [9] and d = 3 as shown in a yet unpublished result by
Maarten De Boeck [7].

A similar application of Godsil’s bound for near polygons known to the
author is the upper bound s5 − s3 + s − 1 on the size of partial distance-2
ovoids in the generalized hexagon with parameter (s, s3) by K. Coolsaet and
H. Van Maldeghem [5]. As in [21, Theorem 6.4.10] this bound and the result
of this paper could be stated in a unified way for near polygons with similar
parameters. Unfortunately, according to [8, Theorem 3.4] there are no other
near polygons with appropriate parameters.

2. Association Schemes

We need some basic properties of an association scheme of the so-called dual
polar graph of rank d. A complete introduction to association schemes can
be found in [3, Ch. 2].

Definition 2.1. Let X be a finite set. An association scheme with d + 1
classes is a pair (X,R), where R = {R0, . . . , Rd} is a set of symmetric binary
relations on X with the following properties:

1. R is a partition of X ×X.
2. R0 is the identity relation.
3. There are numbers pkij such that for x, y ∈ X with xRky there are

exactly pkij elements z with xRiz and zRjy.

The number ni := p0ii is called the i-valency of Ri. The total number of
elements of X is

n := |X| =
d∑
i=0

ni.

The relations Ri are described by their adjacency matrices Ai ∈ Cn,n
defined by

(Ai)xy =

{
1 if xRiy

0 otherwise.

Denote the all-one-matrix by J . There exist (see [3, p. 45]) idempotent Her-
mitian matrices Ej ∈ Cn,n (hence they are positive semidefinite) with the
properties

d∑
j=0

Ej = I, E0 = n−1J,

Aj =

d∑
i=0

PijEi, Ej =
1

n

d∑
i=0

QijAi,
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where P = (Pij) ∈ Cd+1,d+1 and Q = (Qij) ∈ Cd+1,d+1 are the so-called
eigenmatrices of the association scheme. The Pij ’s are the eigenvalues of Aj .
The multiplicity fi of Pij satisfies

fi = rank(Ei) = tr(Ei) = Q0i.

In this paper we consider the association scheme corresponding to the
dual polar graph of H(2d−1, q2). Here X is the set of generators of the polar
space and two generators a, b of H(2d − 1, q2) are in relation Ri if and only
if a and b intersect in codimension i.

In particular, for the dual polar graph H(2d− 1, q2) [3, Theorem 9.4.3]

fd = q2d
q1−2d + 1

q + 1
= q2d−1 − q q

2d−2 − 1

q + 1
.

The eigenvalues Pij can be found in the literature (for example in [21, The-
orem 4.3.6], or [18]). In particular,

Pdi
P0i

= (−q)−i.

Then by [3, Lemma 2.2.1],

Qid =
Pdi
P0i

Q0d = fd(−q)−i.

3. Proof of Theorem 1.5

We will use the following bound by C. D. Godsil [11, Theorem 3.5]. We refer
to the original paper [11] for the definition of weight vectors.

Theorem 3.1 (Godsil [11, Theorem 3.5]). Let X be a graph with G = Aut(X)
acting transitively on both its vertices and its edges. Let λ be an eigenvalue
of the adjacency matrix of X such that all the weight vectors of X on λ are
distinct. Then if X contains a clique on c vertices, the multiplicity m of λ is
larger or equal to c − 1 and if m = c − 1, λ = k

1−c (here k is the valency of

X).

In the next corollary we will restate this theorem for the special case of
association schemes and the adjacency graph Ai. In this case Godsil’s weight
vectors correspond to the rows of the matrices Zj defined by ZjZ

T
j = Ej .

All rows of Zj are distinct if and only if Q0j 6= Qij . The equation λ = k
1−c

corresponds to Pji = P0i

1−c . It can be easily checked using the identities given

in [3, Lemma 2.2.1] that this equation holds if and only if Qij = −1. Hence,
we can state the following corollary.

Corollary 3.2. Let Ri be a relation of an association scheme (X,R). Let Y
be a subset of X of maximum size under the condition that all elements of Y
are pairwise in relation R0 or Ri. Let j ∈ {1, . . . , d}. Then

|Y | ≤ 1 + fj ,



6 Ferdinand Ihringer

if Q0j 6= Qij, and

|Y | ≤ fj
if in addition Qij 6= −1.

Remark 3.3.

(a) Corollary 3.2 talks about association schemes with automorphism groups
that do not necessarily act transitively on X. This is not problem, since
the proof of Theorem 3.1 only uses, in Godsil’s notation, the fact that
the angels 〈

˜
wλ(i),

˜
wλ(j)〉 are all equal and that the weights of X on λ

are all equal. These regularity properties are satisfied by all association
schemes.

(b) It is easy to prove Corollary 3.2 directly by calculating the rank of the
submatrix of Ej indexed by Y .

Proof of Theorem 1.5. Let Y be a set of generators of H(2d−1, q2) such that
the generators of Y are pairwise in relation R0 or Ri, i > 0. By Corollary
3.2,

|Y | ≤ fd = q2d
q1−2d + 1

q + 1
= q2d−1 − q q

2d−2 − 1

q + 1
,

since

Q0d = fd 6= fd(−q)−i = Qid 6= −1,

and

fd = q2d−1 − q q
2d−2 − 1

q + 1
.

The assertion follows. �
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