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History

1984: Bier defines the i-th distribution invariant of an association
scheme.

1987: Bier and Delsarte generalize this concept to distribution
numbers of association schemes.

1986: Manickam, a student of Eiichi Bannai, publishes his PhD
thesis on “Distribution Invariants of Association Schemes”.

1988: Manickam, Miklós, and Singhi publish the
Manickam-Miklós-Singhi conjecture for sets and vector spaces.

2014: Simeon Ball tells me about this conjecture.1

1This important fact was unfortunately missing in the actual talk given in Irsee by
the speaker.
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The MMS Conjecture for Sets

1 Consider M = {1, . . . , 10}.
2 Let f : M → R a weighting of M with

∑
x∈M f (x) = 0.

Question

How many subsets S of M have nonnegative weight, i.e. how many such
S satisfy

∑
x∈S f (x) ≥ 0?

Answer

At least 29. If S ⊆ M has negative weight, then its complement {S has
positive weight.

Too simple. Let’s change the question. . .
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The MMS Conjecture for Sets

1 Consider M = {1, . . . , 10}.
2 Let f : M → R a weighting of M with

∑
x∈M f (x) = 0.

Question

How many 3-element subsets S of M have nonnegative weight, i.e. how
many such S satisfy

∑
x∈S f (x) ≥ 0?

Answer (Marino, Chiaselotti (2002), Hartke, Stolee (2014))

At least
(
7
3

)
= 35.
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Some Examples

We have
(
10
3

)
= 120 subsets with 3 elements.

Example

Put the weight 1 on 1, . . . , 9 and the weight −9 on 10. Then we have(
9
3

)
= 84 nonnegative 3-element subsets.

Example

Put the weight −1 on 1, . . . , 9 and the weight 9 on 10. Then we have(
9
2

)
= 36 nonnegative 3-element subsets.

Example

Put the weight 3 on 1, . . . , 7 and the weight −7 on 8, 9, 10. Then we
have

(
7
3

)
= 35 nonnegative 3-element subsets.

The last example is the unique smallest example (Marino, Chiaselotti,
Hartke, Stolee).
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The Manickam-Miklós-Singhi Conjecture for Sets

Conjecture (Manickam-Miklós-Singhi)

Let M = {1, . . . , n}, n ≥ 4k, and f : M → R a weighting with∑
x∈M f (x) = 0. Then the set Y of nonnegative k-element subsets of M

satisfies

|Y | ≥
(

n − 1

k − 1

)
.
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The Manickam-Miklós-Singhi Conjecture for Sets

Conjecture (Manickam-Miklós-Singhi)

Let M = {1, . . . , n}, n ≥ 4k, and f : M → R a weighting with∑
x∈M f (x) = 0. Then the set Y of nonnegative k-element subsets of M

satisfies

|Y | ≥
(

n − 1

k − 1

)
.

Authors Year Bound on n k = 10

Bier, Manickam 1987 ≈ k2k+1 4 · 1019

Manickam, Miklós 1988 (k − 1)(kk + k2) + k 9 · 1010

Bhattacharya 2003 2k+1ekkk+1 5 · 1018

Tyomkyn 2012 k2(4e log k)k 1016

Alon, Huang, Sudakov min{33k2, 2k3} 2000
Frankl 2013 3

2k3 1500
Chowdhury, Sarkis, Shahriari 2014 8k2 800
Pokrovskiy 201? 1046k 1047
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Conjecture (Manickam-Miklós-Singhi)

Let M = {1, . . . , n}, n ≥ 4k, and f : M → R a weighting with∑
x∈M f (x) = 0. Then the set Y of nonnegative k-element subsets of M

satisfies

|Y | ≥
(

n − 1
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)
.

One can also try to solve the problem for small k .

Authors Year k

Trivial k = 1
Simple k = 2
Marino, Chiaselotti 2002 k = 3
Stolee, Hartke 2014 k ≤ 7

Blinovsky, 201?: complete solution?
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Vector Spaces

A vector space of dimension n over a finite field with q elements: V .

S is a subspace of V of dimension k : k-space.

1-spaces: points, (n − 1)-spaces: hyperplanes, P: all points of V .

The number of k-spaces in an n-space:
[
n
k

]
.

Conjecture (Manickam-Miklós-Singhi)

Let n ≥ 4k, and f : P → R a weighting with
∑

x∈P f (x) = 0. Then the
set Y of nonnegative k-spaces of V satisfies

|Y | ≥
[

n − 1

k − 1

]
.
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Some Examples

Example

Let P be a point. Put the weight
[
n
1

]
− 1 on P, and −1 on all the other

points. Then exactly the
[
n−1
k−1
]

k-spaces through P have nonnegative
weight.

Example

Let H be a hyperplane. Put the weight −1 on all points not in H, and
qn−1/

[
n−1
1

]
on all points in H. Then exactly the

[
n−1
k

]
k-spaces in H

have nonnegative weight.
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A Strengthend Conjecture

Conjecture

Let n ≥ k, and f : P → R a weighting with
∑

x∈P f (x) = 0. Then the
set Y of nonnegative k-spaces of V satisfies

|Y | ≥ min

{[
n − 1

k − 1

]
,

[
n − 1

k

]}
with equality if and only if Y is either the set of all k-spaces through a
point or the set of all k-spaces in a hyperplane.

It is enough to show the conjecture for n ≥ 2k as the case n < 2k follows
from duality.
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More History

The conjecture is true if k divides n.

Theorem (Manickam and Singhi (1988))

If k divides n, then the smallest set of nonnegative k-spaces Y is an
Erdős-Ko-Rado set of maximum size, i.e. a set of pairwise non-trivially
intersecting k-spaces of maximum size.

Proof.

As k divides n, there exists a spread S of P into k-spaces. Let S be a
k-space with negative weight. Suppose S ∈ S. We have∑

x∈M

f (x) =
∑
T∈S

∑
x∈T

f (x) = 0,

so at least one element T ∈ S \ {S} has positive weight. Double
counting over all S with S ∈ S shows |Y | ≥

[
n−1
k−1
]

with equality if and
only if Y is an Erdős-Ko-Rado set of maximum size.
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Contemporary History

Theorem (Chowdhury, Sarkis, Shahriari (2014))

If n ≥ 3k, then

|Y | ≥
[

n − 1

k − 1

]
with equality if and only if Y is the set of all k-spaces through a fixed
point.

Theorem (Huang, Sudakov (2014))

If n ≥ ck for sufficiently large c, then

|Y | ≥
[

n − 1

k − 1

]
.
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Two Ideas

The ideas used by Chowdhury, Sarkis, and Shahriari. Many of the
following only holds for n ≥ 2k + 1.

1 If k does not divide n, then one can still use something similar to a
spread to imitate the Manickam-Singhi double count. This shows

|Y | ≥ (1− O(1/q))

[
n − 1

k − 1

]
.

2 An eigenvalue trick shows

|Y | ≥ (1− O(1/q))

[
n − 1

k − 1

]
.

Combining both ideas shows the result for n ≥ 3k and q ≥ 2.
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The First Idea

Theorem (Beutelspacher (1975))

Let n = rk + δ, r ∈ Z, δ < k. Then one can partition P into one
(k + δ)-space and k-spaces.

Chowdhury, Sarkis, and Shahriari use this to show that if there exists a
k-space S with negative weight, then there are(

1− 2

qn−2k−δ+1

)[
n − 1

k − 1

]
k-spaces with positive weight which intersect S trivially.
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The Second Idea

Let W be the incidence matrix whose rows are indexed by the
k-spaces and whose columns are indexed by the points, i.e.

WPS =

{
1 if P is a point of S ,

0 otherwise.

Let A be the distance-(k − 1)-adjacency matrix of k-spaces, i.e.
the symmetric matrix indexed by k-spaces with

AST =

{
1 if dim(S ∩ T ) = 1,

0 otherwise.

If we view the weight function f as a vector, then it is well-known
that b = Wf is an eigenvector of A, i.e. the vector b indexed by
the k-spaces with the weights of the k-spaces as its entries is an
eigenvector of A.
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The Second Idea

We know that the weight vector b of the k-spaces is an eigenvector
of the distance-(k − 1)-adjacency matrix A with eigenvalue λ. This
shows for a k-space C∑

dim(S∩C)=1

bS = (Ab)C = λbC .

If C is a highest weight k-space, then this shows that at least λ
k-spaces, which meet C in exactly a point, have nonnegative weight.
Fortunately,

λ ≥
(

1− 3

qn−2k+1

)[
n − 1

k − 1

]
.
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Both Ideas Together

Recall n = rk + δ.

For each negative k-space, there are(
1− 2

qn−2k−δ+1

)[
n − 1

k − 1

]
nonnegative k-spaces disjoint to this k-space.

The highest weight k-space meets at least(
1− 3

qn−2k+1

)[
n − 1

k − 1

]
nonnegative k-spaces in a point.

This shows the conjecture for n ≥ 3k and q ≥ 2.

Similar arguments: n ≥ 2k and q large (I., submitted).

Similar arguments: (n, k) = (5, 2) and q ≥ 2 (Chowdhury, Shahriari,
Sarkis, unpublished(?)).
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Generalizations

Other incidence geometries. For polar spaces of rank d , the
Manickam-Singhi technique shows the following.

Theorem

If there exists a spread S of (totally isotropic/singular) k-spaces, then the
set of nonnegative k-spaces Y has at least size n/|S|. Here n is the
number of k-spaces. In case of equality Y is an Erdős-Ko-Rado set.
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Manickam-Singhi technique shows the following.

Theorem

If there exists a spread S of (totally isotropic/singular) k-spaces, then the
set of nonnegative k-spaces Y has at least size n/|S|. Here n is the
number of k-spaces. In case of equality Y is an Erdős-Ko-Rado set.

Non-trivial results seem to be hard . . .

1 Spreads are only known for k = d and some other special cases.
What are good substitutes?

2 The presented eigenvalue trick does not always work. Is there
another one?

3 Combine both results?
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Thank You!
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