The Manickam-Miklós-Singhi Conjecture for Vector Spaces

Ferdinand Ihringer

Justus Liebig University Giessen, Germany

Irsee 2014
(1) Sets

- History
- An Example
- The MMS Conjecture for Sets
(2) Vector Spaces
- The MMS Conjecture for Vector Spaces
- Examples
- History
- State of the Art
(3) The Proof for Vector Spaces
- Two Ideas
- Some Further Thoughts

History

- 1984: Bier defines the i-th distribution invariant of an association scheme.
- 1987: Bier and Delsarte generalize this concept to distribution numbers of association schemes.
- 1986: Manickam, a student of Eiichi Bannai, publishes his PhD thesis on "Distribution Invariants of Association Schemes".
- 1988: Manickam, Miklós, and Singhi publish the Manickam-Miklós-Singhi conjecture for sets and vector spaces.
- 2014: Simeon Ball tells me about this conjecture. ${ }^{1}$

[^0]
The MMS Conjecture for Sets

(1) Consider $M=\{1, \ldots, 10\}$.
(2) Let $f: M \rightarrow \mathbb{R}$ a weighting of M with $\sum_{x \in M} f(x)=0$.

Question

How many subsets S of M have nonnegative weight, i.e. how many such S satisfy $\sum_{x \in S} f(x) \geq 0$?

The MMS Conjecture for Sets

(1) Consider $M=\{1, \ldots, 10\}$.
(2) Let $f: M \rightarrow \mathbb{R}$ a weighting of M with $\sum_{x \in M} f(x)=0$.

Question

How many subsets S of M have nonnegative weight, i.e. how many such S satisfy $\sum_{x \in S} f(x) \geq 0$?

Answer

At least 2^{9}. If $S \subseteq M$ has negative weight, then its complement $C S$ has positive weight.

Too simple. Let's change the question...

The MMS Conjecture for Sets

(1) Consider $M=\{1, \ldots, 10\}$.
(2) Let $f: M \rightarrow \mathbb{R}$ a weighting of M with $\sum_{x \in M} f(x)=0$.

Question

How many 3-element subsets S of M have nonnegative weight, i.e. how many such S satisfy $\sum_{x \in S} f(x) \geq 0$?

The MMS Conjecture for Sets

(1) Consider $M=\{1, \ldots, 10\}$.
(2) Let $f: M \rightarrow \mathbb{R}$ a weighting of M with $\sum_{x \in M} f(x)=0$.

Question

How many 3-element subsets S of M have nonnegative weight, i.e. how many such S satisfy $\sum_{x \in S} f(x) \geq 0$?

Answer (Marino, Chiaselotti (2002), Hartke, Stolee (2014))
At least $\binom{7}{3}=35$.

Some Examples

We have $\binom{10}{3}=120$ subsets with 3 elements.

Example

Put the weight 1 on $1, \ldots, 9$ and the weight -9 on 10. Then we have $\binom{9}{3}=84$ nonnegative 3 -element subsets.

Example

Put the weight -1 on $1, \ldots, 9$ and the weight 9 on 10 . Then we have $\binom{9}{2}=36$ nonnegative 3 -element subsets.

Example

Put the weight 3 on $1, \ldots, 7$ and the weight -7 on $8,9,10$. Then we have $\binom{7}{3}=35$ nonnegative 3 -element subsets.

The last example is the unique smallest example (Marino, Chiaselotti, Hartke, Stolee).

The Manickam-Miklós-Singhi Conjecture for Sets

Conjecture (Manickam-Miklós-Singhi)

Let $M=\{1, \ldots, n\}, n \geq 4 k$, and $f: M \rightarrow \mathbb{R}$ a weighting with $\sum_{x \in M} f(x)=0$. Then the set Y of nonnegative k-element subsets of M satisfies

$$
|Y| \geq\binom{ n-1}{k-1}
$$

The Manickam-Miklós-Singhi Conjecture for Sets

Conjecture (Manickam-Miklós-Singhi)

Let $M=\{1, \ldots, n\}, n \geq 4 k$, and $f: M \rightarrow \mathbb{R}$ a weighting with $\sum_{x \in M} f(x)=0$. Then the set Y of nonnegative k-element subsets of M satisfies

$$
|Y| \geq\binom{ n-1}{k-1}
$$

Authors	Year	Bound on n	$k=10$
Bier, Manickam	1987	$\approx k^{2 k+1}$	$4 \cdot 10^{19}$
Manickam, Miklós	1988	$(k-1)\left(k^{k}+k^{2}\right)+k$	$9 \cdot 10^{10}$
Bhattacharya	2003	$2^{k+1} e^{k} k^{k+1}$	$5 \cdot 10^{18}$
Tyomkyn	2012	$k^{2}(4 e \log k)^{k}$	10^{16}
Alon, Huang, Sudakov		$\min \left\{33 k^{2}, 2 k^{3}\right\}$	2000
Frankl	2013	$\frac{3}{2} k^{3}$	1500
Chowdhury, Sarkis, Shahriari	2014	$8 k^{2}$	800
Pokrovskiy	$201 ?$	$10^{46} k$	10^{47}

The Manickam-Miklós-Singhi Conjecture for Sets

Conjecture (Manickam-Miklós-Singhi)

Let $M=\{1, \ldots, n\}, n \geq 4 k$, and $f: M \rightarrow \mathbb{R}$ a weighting with
$\sum_{x \in M} f(x)=0$. Then the set Y of nonnegative k-element subsets of M satisfies

$$
|Y| \geq\binom{ n-1}{k-1}
$$

One can also try to solve the problem for small k.

Authors	Year	k
Trivial		$k=1$
Simple		$k=2$
Marino, Chiaselotti	2002	$k=3$
Stolee, Hartke	2014	$k \leq 7$

The Manickam-Miklós-Singhi Conjecture for Sets

Conjecture (Manickam-Miklós-Singhi)

Let $M=\{1, \ldots, n\}, n \geq 4 k$, and $f: M \rightarrow \mathbb{R}$ a weighting with
$\sum_{x \in M} f(x)=0$. Then the set Y of nonnegative k-element subsets of M satisfies

$$
|Y| \geq\binom{ n-1}{k-1}
$$

One can also try to solve the problem for small k.

Authors	Year	k
Trivial		$k=1$
Simple		$k=2$
Marino, Chiaselotti	2002	$k=3$
Stolee, Hartke	2014	$k \leq 7$

Blinovsky, 201?: complete solution?

Vector Spaces

- A vector space of dimension n over a finite field with q elements: V.
- S is a subspace of V of dimension k : k-space.
- 1 -spaces: points, $(n-1)$-spaces: hyperplanes, \mathcal{P} : all points of V.
- The number of k-spaces in an n-space: $\left[\begin{array}{l}n \\ k\end{array}\right]$.

Conjecture (Manickam-Miklós-Singhi)

Let $n \geq 4 k$, and $f: \mathcal{P} \rightarrow \mathbb{R}$ a weighting with $\sum_{x \in \mathbb{P}} f(x)=0$. Then the set Y of nonnegative k-spaces of V satisfies

$$
|Y| \geq\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]
$$

Some Examples

Example

Let P be a point. Put the weight $\left[\begin{array}{l}n \\ 1\end{array}\right]-1$ on P, and -1 on all the other points. Then exactly the $\left[\begin{array}{c}n-1 \\ k-1\end{array}\right] k$-spaces through P have nonnegative weight.

Example

Let H be a hyperplane. Put the weight -1 on all points not in H, and $q^{n-1} /\left[\begin{array}{c}n-1 \\ 1\end{array}\right]$ on all points in H. Then exactly the $\left[\begin{array}{c}n-1 \\ k\end{array}\right] k$-spaces in H have nonnegative weight.

A Strengthend Conjecture

Conjecture

Let $n \geq k$, and $f: \mathcal{P} \rightarrow \mathbb{R}$ a weighting with $\sum_{x \in \mathbb{P}} f(x)=0$. Then the set Y of nonnegative k-spaces of V satisfies

$$
|Y| \geq \min \left\{\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right],\left[\begin{array}{c}
n-1 \\
k
\end{array}\right]\right\}
$$

with equality if and only if Y is either the set of all k-spaces through a point or the set of all k-spaces in a hyperplane.

It is enough to show the conjecture for $n \geq 2 k$ as the case $n<2 k$ follows from duality.

More History

The conjecture is true if k divides n.
Theorem (Manickam and Singhi (1988))
If k divides n, then the smallest set of nonnegative k-spaces Y is an Erdős-Ko-Rado set of maximum size, i.e. a set of pairwise non-trivially intersecting k-spaces of maximum size.

More History

The conjecture is true if k divides n.

Theorem (Manickam and Singhi (1988))

If k divides n, then the smallest set of nonnegative k-spaces Y is an Erdős-Ko-Rado set of maximum size, i.e. a set of pairwise non-trivially intersecting k-spaces of maximum size.

Proof.

As k divides n, there exists a spread \mathcal{S} of \mathcal{P} into k-spaces. Let S be a k-space with negative weight. Suppose $S \in \mathcal{S}$. We have

$$
\sum_{x \in M} f(x)=\sum_{T \in \mathcal{S}} \sum_{x \in T} f(x)=0
$$

so at least one element $T \in \mathcal{S} \backslash\{S\}$ has positive weight. Double counting over all \mathcal{S} with $S \in \mathcal{S}$ shows $|Y| \geq\left[\begin{array}{c}n-1 \\ k-1\end{array}\right]$ with equality if and only if Y is an Erdős-Ko-Rado set of maximum size.

Contemporary History

Theorem (Chowdhury, Sarkis, Shahriari (2014))
If $n \geq 3 k$, then

$$
|Y| \geq\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]
$$

with equality if and only if Y is the set of all k-spaces through a fixed point.

Theorem (Huang, Sudakov (2014))
If $n \geq c k$ for sufficiently large c, then

$$
|Y| \geq\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]
$$

Two Ideas

The ideas used by Chowdhury, Sarkis, and Shahriari. Many of the following only holds for $n \geq 2 k+1$.
(1) If k does not divide n, then one can still use something similar to a spread to imitate the Manickam-Singhi double count. This shows

$$
|Y| \geq(1-O(1 / q))\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right] .
$$

(2) An eigenvalue trick shows

$$
|Y| \geq(1-O(1 / q))\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]
$$

Combining both ideas shows the result for $n \geq 3 k$ and $q \geq 2$.

The First Idea

Theorem (Beutelspacher (1975))

Let $n=r k+\delta, r \in \mathbb{Z}, \delta<k$. Then one can partition \mathcal{P} into one $(k+\delta)$-space and k-spaces.

Chowdhury, Sarkis, and Shahriari use this to show that if there exists a k-space S with negative weight, then there are

$$
\left(1-\frac{2}{q^{n-2 k-\delta+1}}\right)\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]
$$

k-spaces with positive weight which intersect S trivially.

The Second Idea

- Let W be the incidence matrix whose rows are indexed by the k-spaces and whose columns are indexed by the points, i.e.

$$
W_{P S}= \begin{cases}1 & \text { if } P \text { is a point of } S \\ 0 & \text { otherwise }\end{cases}
$$

- Let A be the distance- $(k-1)$-adjacency matrix of k-spaces, i.e. the symmetric matrix indexed by k-spaces with

$$
A_{S T}= \begin{cases}1 & \text { if } \operatorname{dim}(S \cap T)=1 \\ 0 & \text { otherwise }\end{cases}
$$

- If we view the weight function f as a vector, then it is well-known that $b=W f$ is an eigenvector of A, i.e. the vector b indexed by the k-spaces with the weights of the k-spaces as its entries is an eigenvector of A.

The Second Idea

- We know that the weight vector b of the k-spaces is an eigenvector of the distance- $(k-1)$-adjacency matrix A with eigenvalue λ. This shows for a k-space C

$$
\sum_{\operatorname{dim}(S \cap C)=1} b_{S}=(A b)_{c}=\lambda b_{C}
$$

- If C is a highest weight k-space, then this shows that at least λ k-spaces, which meet C in exactly a point, have nonnegative weight. Fortunately,

$$
\lambda \geq\left(1-\frac{3}{q^{n-2 k+1}}\right)\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right] .
$$

Both Ideas Together

Recall $n=r k+\delta$.

- For each negative k-space, there are

$$
\left(1-\frac{2}{q^{n-2 k-\delta+1}}\right)\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]
$$

nonnegative k-spaces disjoint to this k-space.

- The highest weight k-space meets at least

$$
\left(1-\frac{3}{q^{n-2 k+1}}\right)\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]
$$

nonnegative k-spaces in a point.

- This shows the conjecture for $n \geq 3 k$ and $q \geq 2$.
- Similar arguments: $n \geq 2 k$ and q large (I., submitted).
- Similar arguments: $(n, k)=(5,2)$ and $q \geq 2$ (Chowdhury, Shahriari, Sarkis, unpublished(?)).

Generalizations

Other incidence geometries. For polar spaces of rank d, the Manickam-Singhi technique shows the following.

Theorem

If there exists a spread \mathcal{S} of (totally isotropic/singular) k-spaces, then the set of nonnegative k-spaces Y has at least size $n /|\mathcal{S}|$. Here n is the number of k-spaces. In case of equality Y is an Erdős-Ko-Rado set.

Generalizations

Other incidence geometries. For polar spaces of rank d, the Manickam-Singhi technique shows the following.

Theorem

If there exists a spread \mathcal{S} of (totally isotropic/singular) k-spaces, then the set of nonnegative k-spaces Y has at least size $n /|\mathcal{S}|$. Here n is the number of k-spaces. In case of equality Y is an Erdős-Ko-Rado set.

Non-trivial results seem to be hard ...
(1) Spreads are only known for $k=d$ and some other special cases. What are good substitutes?
(2) The presented eigenvalue trick does not always work. Is there another one?
(0) Combine both results?

Thank You!

[^0]: ${ }^{1}$ This important fact was unfortunately missing in the actual talk given in Irsee by the speaker.

