The Manickam-Miklós-Singhi Conjecture for Vector Spaces

Ferdinand Ihringer

Justus Liebig University Giessen, Germany

Irsee 2014

- History
- An Example
- The MMS Conjecture for Sets

2 Vector Spaces

- The MMS Conjecture for Vector Spaces
- Examples
- History
- State of the Art
- 3 The Proof for Vector Spaces
 - Two Ideas
 - Some Further Thoughts

- 1984: Bier defines the *i*-th distribution invariant of an association scheme.
- 1987: Bier and Delsarte generalize this concept to **distribution numbers** of association schemes.
- 1986: Manickam, a student of Eiichi Bannai, publishes his PhD thesis on "Distribution Invariants of Association Schemes".
- 1988: Manickam, Miklós, and Singhi publish the Manickam-Miklós-Singhi conjecture for sets and vector spaces.
- 2014: Simeon Ball tells me about this conjecture.¹

 $^{^1\}mathrm{This}$ important fact was unfortunately missing in the actual talk given in Irsee by the speaker.

• Consider
$$M = \{1, ..., 10\}$$

2 Let $f: M \to \mathbb{R}$ a weighting of M with $\sum_{x \in M} f(x) = 0$.

Question

How many subsets S of M have nonnegative weight, i.e. how many such S satisfy $\sum_{x \in S} f(x) \ge 0$?

• Consider
$$M = \{1, ..., 10\}$$

2 Let $f : M \to \mathbb{R}$ a weighting of M with $\sum_{x \in M} f(x) = 0$.

Question

How many subsets S of M have nonnegative weight, i.e. how many such S satisfy $\sum_{x \in S} f(x) \ge 0$?

Answer

At least 2⁹. If $S \subseteq M$ has negative weight, then its complement $\complement S$ has positive weight.

Too simple. Let's change the question...

• Consider
$$M = \{1, ..., 10\}$$

2 Let $f: M \to \mathbb{R}$ a weighting of M with $\sum_{x \in M} f(x) = 0$.

Question

How many 3-element subsets S of M have nonnegative weight, i.e. how many such S satisfy $\sum_{x \in S} f(x) \ge 0$?

• Consider
$$M = \{1, ..., 10\}$$

2 Let $f : M \to \mathbb{R}$ a weighting of M with $\sum_{x \in M} f(x) = 0$.

Question

How many 3-element subsets S of M have nonnegative weight, i.e. how many such S satisfy $\sum_{x \in S} f(x) \ge 0$?

Answer (Marino, Chiaselotti (2002), Hartke, Stolee (2014))

At least $\binom{7}{3} = 35$.

Vector Spaces

The Proof for Vector Spaces

Some Examples

We have $\binom{10}{3} = 120$ subsets with 3 elements.

Example

Put the weight 1 on $1, \ldots, 9$ and the weight -9 on 10. Then we have $\binom{9}{3} = 84$ nonnegative 3-element subsets.

Example

Put the weight -1 on $1, \ldots, 9$ and the weight 9 on 10. Then we have $\binom{9}{2} = 36$ nonnegative 3-element subsets.

Example

Put the weight 3 on 1,...,7 and the weight -7 on 8,9,10. Then we have $\binom{7}{3} = 35$ nonnegative 3-element subsets.

The last example is the unique smallest example (Marino, Chiaselotti, Hartke, Stolee).

The Manickam-Miklós-Singhi Conjecture for Sets

Conjecture (Manickam-Miklós-Singhi)

Let $M = \{1, ..., n\}$, $n \ge 4k$, and $f : M \to \mathbb{R}$ a weighting with $\sum_{x \in M} f(x) = 0$. Then the set Y of nonnegative k-element subsets of M satisfies

$$|Y| \ge \binom{n-1}{k-1}.$$

The Manickam-Miklós-Singhi Conjecture for Sets

Conjecture (Manickam-Miklós-Singhi)

Let $M = \{1, ..., n\}$, $n \ge 4k$, and $f : M \to \mathbb{R}$ a weighting with $\sum_{x \in M} f(x) = 0$. Then the set Y of nonnegative k-element subsets of M satisfies

$$|Y| \ge \binom{n-1}{k-1}.$$

Authors	Year	Bound on n	k = 10
Bier, Manickam	1987	$pprox k^{2k+1}$	$4\cdot 10^{19}$
Manickam, Miklós	1988	$(k-1)(k^k+k^2)+k$	$9\cdot 10^{10}$
Bhattacharya	2003	$2^{k+1}e^kk^{k+1}$	$5\cdot 10^{18}$
Tyomkyn	2012	$k^2(4e\log k)^k$	10^{16}
Alon, Huang, Sudakov		$\min\{33k^2, 2k^3\}$	2000
Frankl	2013	$\frac{3}{2}k^{3}$	1500
Chowdhury, Sarkis, Shahriari	2014	$\hat{8}k^2$	800
Pokrovskiy	201?	10 ⁴⁶ k	1047

The Manickam-Miklós-Singhi Conjecture for Sets

Conjecture (Manickam-Miklós-Singhi)

Let $M = \{1, ..., n\}$, $n \ge 4k$, and $f : M \to \mathbb{R}$ a weighting with $\sum_{x \in M} f(x) = 0$. Then the set Y of nonnegative k-element subsets of M satisfies

$$|Y| \ge \binom{n-1}{k-1}.$$

One can also try to solve the problem for small k.

Authors	Year	k
Trivial		k = 1
Simple		k = 2
Marino, Chiaselotti	2002	k = 3
Stolee, Hartke	2014	$k \leq 7$

The Manickam-Miklós-Singhi Conjecture for Sets

Conjecture (Manickam-Miklós-Singhi)

Let $M = \{1, ..., n\}$, $n \ge 4k$, and $f : M \to \mathbb{R}$ a weighting with $\sum_{x \in M} f(x) = 0$. Then the set Y of nonnegative k-element subsets of M satisfies

$$|Y| \ge \binom{n-1}{k-1}.$$

One can also try to solve the problem for small k.

Authors	Year	k
Trivial		k = 1
Simple		<i>k</i> = 2
Marino, Chiaselotti	2002	<i>k</i> = 3
Stolee, Hartke	2014	$k \leq 7$

Blinovsky, 201?: complete solution?

- A vector space of dimension n over a finite field with q elements: V.
- S is a subspace of V of dimension k: k-space.
- 1-spaces: points, (n-1)-spaces: hyperplanes, \mathcal{P} : all points of V.
- The number of k-spaces in an n-space: $\begin{bmatrix} n \\ k \end{bmatrix}$.

Conjecture (Manickam-Miklós-Singhi)

Let $n \ge 4k$, and $f : \mathcal{P} \to \mathbb{R}$ a weighting with $\sum_{x \in \mathbb{P}} f(x) = 0$. Then the set Y of nonnegative k-spaces of V satisfies

$$|Y| \ge {n-1 \brack k-1}.$$

Some Examples

Example

Let *P* be a point. Put the weight $\binom{n}{1} - 1$ on *P*, and -1 on all the other points. Then exactly the $\binom{n-1}{k-1}$ *k*-spaces through *P* have nonnegative weight.

Example

Let *H* be a hyperplane. Put the weight -1 on all points not in *H*, and $q^{n-1}/{\binom{n-1}{1}}$ on all points in *H*. Then exactly the $\binom{n-1}{k}$ *k*-spaces in *H* have nonnegative weight.

A Strengthend Conjecture

Conjecture

Let $n \ge k$, and $f : \mathcal{P} \to \mathbb{R}$ a weighting with $\sum_{x \in \mathbb{P}} f(x) = 0$. Then the set Y of nonnegative k-spaces of V satisfies

$$|Y| \ge \min\left\{ {n-1 \brack k-1}, {n-1 \brack k} \right\}$$

with equality if and only if Y is either the set of all k-spaces through a point or the set of all k-spaces in a hyperplane.

It is enough to show the conjecture for $n \ge 2k$ as the case n < 2k follows from duality.

More History

The conjecture is true if k divides n.

Theorem (Manickam and Singhi (1988))

If k divides n, then the smallest set of nonnegative k-spaces Y is an **Erdős-Ko-Rado set** of maximum size, i.e. a set of pairwise non-trivially intersecting k-spaces of maximum size.

More History

The conjecture is true if k divides n.

Theorem (Manickam and Singhi (1988))

If k divides n, then the smallest set of nonnegative k-spaces Y is an **Erdős-Ko-Rado set** of maximum size, i.e. a set of pairwise non-trivially intersecting k-spaces of maximum size.

Proof.

As k divides n, there exists a spread S of P into k-spaces. Let S be a k-space with negative weight. Suppose $S \in S$. We have

$$\sum_{x\in M} f(x) = \sum_{T\in S} \sum_{x\in T} f(x) = 0,$$

so at least one element $T \in S \setminus \{S\}$ has positive weight. Double counting over all S with $S \in S$ shows $|Y| \ge {n-1 \brack k-1}$ with equality if and only if Y is an Erdős-Ko-Rado set of maximum size.

Vector Spaces

The Proof for Vector Spaces

Contemporary History

Theorem (Chowdhury, Sarkis, Shahriari (2014))

If $n \ge 3k$, then

$$|Y| \ge {n-1 \brack k-1}$$

with equality if and only if Y is the set of all k-spaces through a fixed point.

Theorem (Huang, Sudakov (2014)) If $n \ge ck$ for sufficiently large c, then $|Y| \ge {n-1 \choose k-1}.$

The ideas used by Chowdhury, Sarkis, and Shahriari. Many of the following only holds for $n \ge 2k + 1$.

• If k does not divide n, then one can still use something similar to a spread to imitate the Manickam-Singhi double count. This shows

$$|Y| \ge (1 - O(1/q)) {n-1 \brack k-1}.$$

An eigenvalue trick shows

$$|Y| \geq (1 - O(1/q)) iggl[{n-1 \atop k-1} iggr].$$

Combining both ideas shows the result for $n \ge 3k$ and $q \ge 2$.

The First Idea

Theorem (Beutelspacher (1975))

Let $n = rk + \delta$, $r \in \mathbb{Z}$, $\delta < k$. Then one can partition \mathcal{P} into one $(k + \delta)$ -space and k-spaces.

Chowdhury, Sarkis, and Shahriari use this to show that if there exists a k-space S with negative weight, then there are

$$\left(1-\frac{2}{q^{n-2k-\delta+1}}\right)\binom{n-1}{k-1}$$

k-spaces with positive weight which intersect S trivially.

iets 2000	Vector Spaces	The Proof for Vector Spaces
The Second Idea		

• Let *W* be the **incidence matrix** whose rows are indexed by the *k*-spaces and whose columns are indexed by the points, i.e.

$$W_{PS} = egin{cases} 1 & ext{if } P ext{ is a point of } S, \ 0 & ext{otherwise}. \end{cases}$$

• Let A be the **distance**-(k - 1)-**adjacency matrix** of k-spaces, i.e. the symmetric matrix indexed by k-spaces with

$$\mathcal{A}_{ST} = egin{cases} 1 & ext{ if } \dim(S \cap T) = 1, \ 0 & ext{ otherwise.} \end{cases}$$

• If we view the weight function f as a vector, then it is well-known that b = Wf is an **eigenvector** of A, i.e. the vector b indexed by the k-spaces with the weights of the k-spaces as its entries is an eigenvector of A.

 We know that the weight vector b of the k-spaces is an eigenvector of the distance-(k - 1)-adjacency matrix A with eigenvalue λ. This shows for a k-space C

$$\sum_{\dim(S\cap C)=1} b_S = (Ab)_C = \lambda b_C.$$

 If C is a highest weight k-space, then this shows that at least λ k-spaces, which meet C in exactly a point, have nonnegative weight. Fortunately,

$$\lambda \ge \left(1 - \frac{3}{q^{n-2k+1}}\right) {n-1 \brack k-1}.$$

Both Ideas Together

Recall $n = rk + \delta$.

• For each negative k-space, there are

$$\left(1-\frac{2}{q^{n-2k-\delta+1}}\right)\binom{n-1}{k-1}$$

nonnegative k-spaces disjoint to this k-space.

• The highest weight k-space meets at least

$$\left(1-\frac{3}{q^{n-2k+1}}\right)\binom{n-1}{k-1}$$

nonnegative k-spaces in a point.

- This shows the conjecture for $n \ge 3k$ and $q \ge 2$.
- Similar arguments: $n \ge 2k$ and q large (I., submitted).
- Similar arguments: (n, k) = (5, 2) and $q \ge 2$ (Chowdhury, Shahriari, Sarkis, unpublished(?)).

Vector Spaces

The Proof for Vector Spaces

Generalizations

Other incidence geometries. For **polar spaces** of rank d, the Manickam-Singhi technique shows the following.

Theorem

If there exists a spread S of (totally isotropic/singular) k-spaces, then the set of nonnegative k-spaces Y has at least size n/|S|. Here n is the number of k-spaces. In case of equality Y is an Erdős-Ko-Rado set.

Vector Spaces

The Proof for Vector Spaces

Generalizations

Other incidence geometries. For **polar spaces** of rank d, the Manickam-Singhi technique shows the following.

Theorem

If there exists a spread S of (totally isotropic/singular) k-spaces, then the set of nonnegative k-spaces Y has at least size n/|S|. Here n is the number of k-spaces. In case of equality Y is an Erdős-Ko-Rado set.

Non-trivial results seem to be hard ...

- Spreads are only known for k = d and some other special cases. What are good substitutes?
- The presented eigenvalue trick does not always work. Is there another one?
- Ombine both results?

Sets			
0000			

Thank You!